

Mr John Coles
Bury Hill Landscape Supplies Ltd
The Estate Office
Old Bury Hill
Westcott
Nr Dorking
Surrey, RH4 3JU

2<sup>nd</sup> November 2022 Our Ref: TOHA/22/7689/2/SS

Your Ref: see below

#### **Dear Sirs**

# Topsoil Analysis Report: Bury Hill Horsham Yard - Planting Loam (S) Blend

We have completed the analysis of the soil sample recently submitted, referenced *Planting Loam (S) Blend*, and have pleasure reporting our findings.

The purpose of the analysis was to determine the suitability of the sample for general landscape purposes (trees, shrubs, amenity grass). In addition, this sample has been assessed to determine its compliance with the requirements of the British Standard for Topsoil (BS3882:2015 – Specification for Topsoil – Table 1, Multipurpose Topsoil).

This report presents the results of analysis for the sample submitted to our office, and it should be considered 'indicative' of the topsoil source. The report and results should therefore not be used by third parties as a means of verification or validation testing or waste designation purposes, especially after the topsoil has left the Bury Hill Landscape Supplies Ltd site.

#### SAMPLE EXAMINATION

The sample was described as a very dark grey (Munsell Colour 10YR 3/1), slightly moist, friable, non-calcareous LOAMY SAND with a weakly developed, very fine to fine granular structure\*. The stone content of the sample was low and contained a moderate proportion of organic fines and occasionally woody fragments. No unusual odours, deleterious materials, roots or rhizomes of pernicious weeds were observed.

\*This appraisal of soil structure was made from examination of a disturbed sample. Structure is a key soil characteristic that may only be accurately assessed by examination in an in-situ state.



Plate 1: Sample Planting Loam (S) Blend

#### ANALYTICAL SCHEDULE

The sample was submitted to a UKAS and MCERTS accredited laboratory for a range of physical and chemical tests to confirm the composition and fertility of the soil, and the concentration of selected potential contaminants. The following parameters were determined:

- detailed particle size analysis ('5 sands', silt, clay);
- stone content (2-20mm, 20-50mm, >50mm);
- pH and electrical conductivity values;
- calcium carbonate;
- exchangeable sodium percentage;
- major plant nutrients (N, P, K, Mg);
- organic matter content;
- C:N ratio;
- heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Se, Zn, B);
- total cyanide and total (mono) phenols;
- speciated PAHs (US EPA16 suite);
- aromatic and aliphatic TPH (C5-C35 banding);
- benzene, toluene, ethylbenzene, xylene (BTEX);
- asbestos screen.

The results are presented on the attached Certificate of Analysis and an interpretation of the results is given below.

TOHA/22/7689/2/SS/Nov Page 2

#### RESULTS OF ANALYSIS

### Particle Size Analysis and Stone Content

The sample fell into the *loamy sand* texture class. Further detailed particle size analysis found the sample to have a sufficiently narrow particle size distribution and a predominance of *medium sand* (0.25-0.50mm) and smaller proportions of *coarse sand* (0.50-1.0mm). This is usually ideal for topsoil in general landscape applications as reasonable porosity levels are generally maintained in a consolidated state and the risk of particle interpacking is reduced. The sample should therefore provide adequate drainage and aeration properties for general landscape applications.

The stone content of the sample was low and as such, stones should not restrict the use of the soil for general landscape purposes.

## pH and Electrical Conductivity Values

The sample was strongly alkaline in reaction (pH 8.5). This pH value would be considered suitable for general landscape purposes providing species with a wide pH tolerance or those known to prefer alkaline soils are selected for planting, turfing and seeding.

The electrical conductivity (salinity) value (water extract) was moderate, which indicates that soluble salts were not present at levels that would be harmful to plants.

The electrical conductivity value by CaSO<sub>4</sub> extract (BS3882 requirement) fell below the maximum specified value (3300 μS/cm) given in BS3882:2015 – Table 1.

### Organic Matter and Fertility Status

The sample was adequately supplied with organic matter and all major plant nutrients.

The C:N ratio of the sample was acceptable for general landscape purposes.

## **Potential Contaminants**

With reference to *BS3882:2015 - Table 1*: Notes 3 and 4, there is a requirement to confirm levels of potential contaminants in relation to the topsoil's proposed end use. This includes human health, environmental protection and metals considered toxic to plants. In the absence of site-specific assessment criteria, the concentrations that affect human health have been compared with the *residential with homegrown produce* land use in the Suitable For Use Levels (S4ULs) presented in *The LQM/CIEH S4ULs for Human Health Risk Assessment* (2015) and the DEFRA SP1010: *Development of Category 4 Screening Levels* (C4SLs) *for Assessment of Land Affected by Contamination – Policy Companion Document* (2014).

Of the potential contaminants determined, none exceeded their respective guideline values.

#### **Phytotoxic Contaminants**

Of the phytotoxic (toxic to plants) contaminants determined (copper, nickel, zinc), none was found at levels that exceeded the maximum permissible levels specified in BS3882:2015 – Table 1.

# CONCLUSION

The purpose of the analysis was to determine the suitability of the sample for general landscape purposes (trees, shrubs, amenity grass). In addition, this sample has been assessed to determine its compliance with the requirements of the British Standard for Topsoil (BS3882:2015 – Specification for Topsoil – Table 1, Multipurpose Topsoil).

From the soil examination and subsequent laboratory analysis, the sample was described as a strongly alkaline, non-saline, non-calcareous loamy sand with a weakly developed structure and very low stone content. The sample contained sufficient reserves of organic matter and all major plant nutrients. Of the potential contaminants determined, none exceeded their respective guideline values.

To conclude, based on our findings, the topsoil represented by this sample would be considered suitable for general landscape purposes (trees, shrubs and amenity grass), provided species with a wide pH tolerance or

TOHA/22/7689/2/SS/Nov Page 3

those known to prefer alkaline soils are selected for planting, turfing and seeding and the physical condition of the soil is satisfactory.

The topsoil was also fully compliant with the requirements of the British Standard for Topsoil (BS3882:2015 – Specification for Topsoil – Table 1, Multipurpose Topsoil).

# Soil Handling Recommendations

It is important to maintain the physical condition of the soil and avoid structural damage during all phases of soil handling (e.g. stockpiling, respreading, cultivating, planting, seeding or turfing). As a consequence, soil handling operations should be carried out when soil is sufficiently dry to be non-plastic (friable) in consistency.

It is important to ensure that the soil is not unnecessarily compacted by trampling or trafficking by site machinery, and soil handling should be stopped during and after heavy rainfall and not continued until the soil is friable in consistency. If the soil is structurally damaged and compacted at any stage during the course of soiling or landscaping works, it should be cultivated appropriately to relieve the compaction and to restore the soil's structure prior to any planting, turfing or seeding.

Further details on soil handling are provided in Annex A of BS3882:2015.

\_\_\_\_\_

We hope this report meets with your approval and provides the necessary information. Please do not hesitate to contact the undersigned if we can be of further assistance.

Yours faithfully

Harriet MacRae BSc MSc

Graduate Soil Scientist

Matthew Heins BSc (Hons) MISoilSci Senior Soil Scientist

For & on behalf of Tim O'Hare Associates LLP

TOHA/22/7689/2/SS/Nov Page 4



| Client:     | Bury Hill Landscape Supplies Ltd |
|-------------|----------------------------------|
| Project:    | Bury Hill Horsham Yard           |
| Job:        | Topsoil Analysis - BS3882:2015   |
| Date:       | 02/11/2022                       |
| Job Ref No: | TOHA/22/7689/2/SS                |

| Sample Reference                                                             |     |                  |
|------------------------------------------------------------------------------|-----|------------------|
| Clay (-0.002mm)                                                              | ,   | Accreditation    |
| Clay (<0.002mm)                                                              |     | UKAS<br>UKAS     |
| Very Fine Sand (0.05-0.15mm) %                                               |     | UKAS             |
| Fine Sand (0.15-0.25mm)                                                      |     | UKAS             |
| Medium Sand (0.25-0.50mm) %                                                  | 6   | UKAS             |
| Coarse Sand (0.50-1.0mm) %                                                   |     | UKAS             |
| Very Coarse Sand (1.0-2.0mm) %                                               |     | UKAS             |
| Total Sand (0.05-2.0mm) %                                                    |     | UKAS             |
| Texture Class (UK Classification) Stones (2-20mm) \$\text{Stones}\$ (2-20mm) |     | UKAS<br>GLP      |
| Stones (2-20mm)         % D           Stones (20-50mm)         % D           |     | GLP              |
|                                                                              |     | GLP              |
| Stones (>50mm) % DW G                                                        |     | - OLI            |
| pH Value (1:2.5 water extract) uni                                           | its | UKAS             |
| Calcium Carbonate %                                                          |     | UKAS             |
| Electrical Conductivity (1:2.5 water extract) uS/o                           |     | UKAS             |
| Electrical Conductivity (1:2 CaSO <sub>4</sub> extract) uS/o                 | cm  | UKAS             |
| Exchangeable Sodium Percentage %                                             | 6   | UKAS             |
| Organic Matter (LOI) %                                                       |     | UKAS             |
| Total Nitrogen (Dumas) %                                                     | _   | UKAS             |
| C: N Ratio rati                                                              |     | UKAS             |
| Extractable Phosphorus mg                                                    |     | UKAS             |
| Extractable Potassium mg                                                     |     | UKAS             |
| Extractable Magnesium mg                                                     | g/I | UKAS             |
| Total Arsenic (As) mg/                                                       | /kc | MCERTS           |
| Total Arsenic (As) mg/ Total Cadmium (Cd) mg/                                |     | MCERTS           |
| Total Chromium (Cr) mg/                                                      |     | MCERTS           |
| Hexavalent Chromium (Cr VI) mg/                                              |     | MCERTS           |
| Total Copper (Cu) mg/                                                        |     | MCERTS           |
| Total Lead (Pb) mg/                                                          |     | MCERTS           |
| Total Mercury (Hg) mg/                                                       |     | MCERTS           |
| Total Nickel (Ni) mg/                                                        |     | MCERTS           |
| Total Selenium (Se) mg/                                                      |     | MCERTS           |
| Total Zinc (Zn) mg/                                                          |     | MCERTS           |
| Water Soluble Boron (B) mg/                                                  | /kg | MCERTS           |
| Total Cyanide (CN) mg/                                                       |     | MCERTS           |
| Total (mono) Phenols mg/                                                     | /kg | MCERTS           |
|                                                                              |     |                  |
| Naphthalene mg/                                                              |     | MCERTS           |
| Acenaphthylene mg/                                                           |     | MCERTS           |
| Acenaphthene mg/                                                             |     | MCERTS           |
| Fluorene mg/                                                                 |     | MCERTS           |
| Phenanthrene mg/                                                             |     | MCERTS           |
| Anthracene mg/                                                               |     | MCERTS           |
| Fluoranthene mg/                                                             |     | MCERTS           |
| Pyrene mg/                                                                   |     | MCERTS           |
| Benzo(a)anthracene mg/                                                       |     | MCERTS           |
| Chrysene mg/                                                                 |     | MCERTS<br>MCERTS |
| Benzo(b)fluoranthene mg/ Benzo(k)fluoranthene mg/                            |     | MCERTS           |
| Benzo(k)fluoranthene mg/<br>Benzo(a)pyrene mg/l                              |     | MCERTS           |
| Indeno(1,2,3-cd)pyrene mg/                                                   |     | MCERTS           |
| Dibenzo(a,h)anthracene mg/                                                   |     | MCERTS           |
| Benzo(g,h,i)perylene mg/                                                     |     | MCERTS           |
| Total PAHs (sum USEPA16) mg/                                                 |     | MCERTS           |
|                                                                              | 9   |                  |
| Aliphatic TPH >C5 - C6 mg/                                                   | /ka | MCERTS           |
| Aliphatic TPH >C6 - C8 mg/                                                   |     | MCERTS           |
| Aliphatic TPH >C8 - C10 mg/                                                  |     | MCERTS           |
| Aliphatic TPH >C10 - C12 mg/                                                 |     | MCERTS           |
| Aliphatic TPH >C12 - C16 mg/                                                 |     | MCERTS           |
| Aliphatic TPH >C16 - C21 mg/                                                 |     | MCERTS           |
| Aliphatic TPH >C21 - C35 mg/                                                 |     | MCERTS           |
| Aliphatic TPH (C5 - C35) mg/                                                 |     | MCERTS           |
| Aromatic TPH >C5 - C7 mg/                                                    |     | MCERTS           |
| Aromatic TPH >C7 - C8 mg/                                                    |     | MCERTS           |
| Aromatic TPH >C8 - C10 mg/                                                   |     | MCERTS           |
| Aromatic TPH >C10 - C12 mg/                                                  |     | MCERTS           |
| Aromatic TPH >C12 - C16 mg/                                                  |     | MCERTS           |
| Aromatic TPH >C16 - C21 mg/                                                  | /kg | MCERTS           |
| Aromatic TPH >C21 - C35 mg/                                                  | /kg | MCERTS           |
| Aromatic TPH (C5 - C35) mg/                                                  | /kg | MCERTS           |
|                                                                              |     |                  |
| Benzene mg/                                                                  | /kg | MCERTS           |
| Toluene mg/                                                                  | /kg | MCERTS           |
| Ethylbenzene mg/                                                             | /kg | MCERTS           |
| o-xylene mg/                                                                 | /kg | MCERTS           |
| MTBE (Methyl Tertiary Butyl Ether) mg/                                       |     | MCERTS           |
|                                                                              |     |                  |
| Asbestos ND.                                                                 | )/D | ISO 17025        |
|                                                                              |     |                  |

LS = LOAMY SAND

#### Visual Examination

The sample was described as a very dark grey (Munsell Colour 10YR 3/1), slightly moist, friable, non-calcareous LOAMY SAND with a weakly developed, very fine to fine granular structure. The stone content of the sample was low and contained a moderate proportion of organic fines and occasionally woody fragments. No unusual odours, deleterious materials, roots or rhizomes of pernicious weeds were observed.

Results of analysis should be read in conjunction with the report they were issued with

The contents of this certificate shall not be reproduced without the express written permission of Tim O'Hare Associates LLP.

H.MacRae

Harriet MacRae BSc MSc Graduate Soil Scientist